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Dispersion curves in the diffusional instability of autocatalytic reaction fronts
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A (linear) stability analysis of planar reaction fronts to transverse perturbations is considered for systems
based on cubic autocatalysis and a model for the chlorite-tetrathionate reaction. Dispersion curves (plots of the
growth rate o against a transverse wave-number k) are obtained. In both cases it is seen that there is a nonzero
value D, of D (the ratio of the diffusion coefficients of autocatalyst and substrate) at which ,,,,, the maximum
value of o for a given value of D, achieves its largest value, with o,,,, being less for other values of D and
becoming small as D decreases to zero. The existence of the optimum value D, for initiating a diffusional
instability is confirmed, in the cubic autocatalysis case, by an asymptotic analysis for small wave numbers.
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I. INTRODUCTION

It is already well-established, both experimentally [1-3]
and theoretically [4,5], that planar reaction fronts in auto-
catalytic systems can become transversely unstable if the dif-
fusion coefficients of substrate and autocatalyst differ by a
sufficient amount. Much of this previous work has been con-
cerned with the iodate-arsenous acid (IAA) system, for
which cubic autocatalysis is a good approximation in the
arsenous acid excess case [6]. It is this latter reaction we
consider in detail, namely,

A+2B— 3B rate kgab?, (1)

where a and b are the concentrations of A and B, respec-
tively, and k, is a constant. For the TAA system, A and B
represent, respectively, IO; and I". The dimensionless
reaction-diffusion equations corresponding to reaction (1) are
(see, [7,8], for example)

da
— =V2a - ab?,

b
— =DV?b + ab?, (2)
Jt ot

where D=Dy/D, is the ratio of the diffusion coefficients of
reactant species B and A. Ahead of the reaction front there is
only A present and, in the front, A is converted fully to B.

The basic idea, as described clearly in [4], is that the
diffusion of the autocatalyst B has a stabilizing effect on
planar waves, whereas the diffusion of the substrate A has a
destabilizing effect. Thus if this latter effect is sufficiently
strong relative to the first, i.e., if the ratio D is sufficiently
different from unity, then the wave will become transversely
unstable. This leads to a critical value D, of D at which the
stability of a planar wave changes, with, in the present de-
scription (2), the wave being unstable for D <D,. For cubic
autocatalysis it has been shown [5] that D,=0.435.

From this argument, it might be expected that the insta-
bility should strengthen as the difference |D,—D| increases,
as exemplified, for example, by increasing (positive) growth
rates o derived in a linear stability analysis. We find that this
is not the case when we compute the dispersion curves, i.e.,
plots of o against a transverse wave-number k for a given
value of D. We see that the maximum value of the growth
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rate o, starts by increasing as D is reduced from D,.. How-
ever, a value of D, of D is reached at which point o,
achieves its greatest value, with Dy=0.15 for cubic autoca-
talysis. For values of D <D, the value of o, decreases as
D is further reduced from D, and becomes very small for
small values of D.

Our analysis is based on the linear stability of planar re-
action fronts in system (1) governed by Egs. (2) and we now
derive the equations for this analysis.

II. STABILITY ANALYSIS

We have in mind the experiments performed in Hele-
Shaw cells and the consequent theory, see [10-13], for ex-
ample. This allows us to restrict attention to two space vari-
ables, x in the direction of propagation and y transverse to
the reaction front. The planar traveling waves, the base state
for our stability analysis, are determined from Eq. (2) by first
introducing the traveling coordinate {=x-ct, where c(>0) is
the (constant) wave speed and then looking for a solution in
the form

b(x,y,t)=b0(§). (3)

The resulting traveling wave equations are

a(x’y’t) = ao(g)s

aj+cal—aght=0, Db} +cb)+aghi=0, (4)

(where primes denote differentiation with respect to ¢), being
subject to the boundary conditions
agy— 1, bg—0as {— oo,

ag—0, by—1as{— —oo.

(5)

Equations (4) and (5) have already been discussed in some
detail [9,8]. For completeness we show a graph of the wave
speed ¢ plotted against D in Fig. 1. We note that
¢~1219D+--+ as D—0 [9] (shown by the broken line in
Fig. 1).

To consider the diffusional stability of the reaction fronts
given by Egs. (4) and (5), we put
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FIG. 1. The speed ¢ of the reaction fronts, as given by Egs. (4)
and (5), plotted against D. The asymptotic solution given in [9] is
shown by the broken line.

b(L.y,0) =bo() + B(L.y,1),
(6)
where we assume that A,B are small perturbations. We sub-

stitute Eq. (6) into Egs. (2) and look for a solution in the
form

a(g.y.t) =ap() +A(Ly.1),

B(Ly.)=e™™B(0). ()

This leads to an eigenvalue problem for [A(Z),B({)] in terms
of the growth rate o and the wave-number k as

A(Ly,1) =e™MA(),

A"+ cA' = (bi+ K>+ 0)A - 2a4byB =0 (8)

DB" + cB' — (DK? = 2agby+ 0)B + b}A =0 9)
subject to the boundary conditions that

A—0, B—0, as{— *o. (10)
We note in passing that, when D=1, ag+by=1, A+B=0
and, as a consequence, o=—k2.

For general values of D, Egs. (8)-(10) had to be solved
numerically, which was done using the technique described
in [13,14]. The traveling wave Eqgs. (4) and (5) were solved
using a shooting technique incorporating the asymptotic
forms of the solution for |¢| large. The concentration profiles
were then specified at N points with equally spacing AZ.
Equations (8) and (9) were then discretized at these N points
using central-difference approximations for the derivatives.
This converts the system to an N XN matrix eigenvalue
problem, which was solved using the
LAPACK solver DGEEVX. For our results we generally used
N=500 and AZ=0.1, although some cases were calculated
with a larger N (and smaller A{) to check accuracy. From
these calculations the largest eigenvalue o is determined for
a given value of the wave-number k. Repeating these calcu-
lations for different values of the wave number enables the
dispersion curves to be plotted.

In Fig. 2 we plot dispersion curves for a range of values
of D. In Fig. 2(a) (for D=1.0 to D=0.1) we see that the
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FIG. 2. Dispersion curves for cubic autocatalysis (1), plots of o
against k, obtained from Egs. (8)-(10), (a) for D=1.0 to D=0.1, (b)
for D=0.1 to D=0.025.

reaction front becomes transversely unstable, i.e., >0 for a
range of k, at a value between D=0.5 and D=0.4, consistent
with [5]. Also, the (positive) maximum value of o increases
as D is decreased to D=0.1. In Fig. 2(b) we give dispersion
curves for D=0.1 to D=0.025. In this case we see that 7,,,,
decreases as D is decreased from D=0.1, although the range
of unstable wave numbers is increasing. The maximum value
of o has become relatively small by D=0.025 and suggests
that possibly ¢,,,,—0 as D—0 (a point that is confirmed
below). To emphasise this point we give the values of o,,,,
obtained from these dispersion curves against D in Fig. 3(a).
This figure indicates that o,,,, achieves its greatest value at
D=D,=0.15. (Note that we have plotted 10> X &, in this
figure.) In Fig. 3(b) we give the corresponding values of the
wave-number k,,,. where o=0,,,,. The figure shows that &,
decreases as D increases (as seen in Fig. 2), from k,,,,
=0.249 at D=0.025 to k,,,,=0.073 at D=0.4.

We can gain further insight into the nature of these dis-
persion curves by considering the solution to Egs. (8) and (9)
for k small, which is what we now do.

A. Solution for small wave numbers

We look for a solution to Egs. (8)—(10) (for D # 1) valid
for k£ small by expanding
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FIG. 3. (a) Values of 0,,,, X 10 obtained from the dispersion
curves shown in Fig. 2 plotted against D to show that o,,,, achieves
its largest value at D=0.15. (b) The values of the wave-number
Koo Where =0,

K((;k) =Ay(0) +k2A1(§) + 0,

o(k) = ook® + okt - .
(11)

It is easily seen that the solution to the leading order problem
is

B({:k)=By() +K*By(D + -+,

Ag=ay(Q), By=b)(0), (12)

which simply reflects the fact that Eqs. (4) are translationally
invariant. Any arbitrary multiple of Eq. (12) is also a solution
to the leading order problem and, without any loss in gener-
ality, we can take this to be unity.

At O(k*) we obtain, using Eq. (12),

A,l,+ CA; - bgAl - 2a0b0Bl = (0'0+ 1)@’0,

DB/ + cB| + 2aybB, + b}A, = (oo + D)b'y.  (13)

Before examining the solution to Eqgs. (13) in detail, we first
note that, on adding the equations, integrating once and
applying the boundary conditions that A;—0,B;—0 as

§Hm5
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A’1’+ CAI +DB,1 + CBI = (0'0+ 1)((10- 1) + ((To+D)bo.
(14)
Equation (14) shows that we cannot also apply the boundary

conditions that A} —0,B;—0 as {— —%. The most we can
do is to satisfy

(D-1)
AIHO, BIH

as [ — — oo, (15)

Conditions (15) reflect the singular nature of the solution to
Egs. (8) and (9) as k— 0. To complete the solution an outer
region is required in which

Y=k¢, ay=0, by=1, A=0, B=kB(Y:k),
o=k5. (16)
The resulting equation for B is
kK*DB" + cB' — (G+D)B=0. (17)

In Eq. (17) primes denote differentiation with respect to Y. A
solution is sought by expanding in powers of k2, the leading

order solution EO is, on matching with Eq. (15) and using Eq.

(11)

0 (18)

3 =(D—1)exp<(UO+D)Y>.

Cc Cc

We note that 1§’0—>0 as Y—— and is consistent with the
behavior, as {— —, of the solution to the equations that
arise at O(k*) in expansion (11).

We now return to Eqs. (13). We note that A;=ay, B;=b), is
a solution to the homogeneous problem satisfying homoge-
neous boundary conditions. Thus a compatibility condition is
required for the nonhomogeneous problem to have a solution
which satisfies all the boundary conditions. It is this condi-
tion that determines the constant o,. To derive this condition
we need to consider the adjoint problem [16] (Theorem 2.2,
page 307). To do so we start by writing Egs. (13) in the form

d
d_g(ech{) - (b%A] + zaoboBl)eC§: ((T() + 1)6”%6,

/ 2 2 C C !

We then write w,=e“A |, w,=De“PB| and express Egs. (19)
as the system of first-order equations

u' =Mu+R, (20)

where

026219-3



J. H. MERKIN AND I. Z. KISS

045 O,
0.3+
0.2

0.1+

0.0

-0.1

-0.2—

-0.34

0.4

05 T T T T T T
0.0 0.1 0.2 0.3 0.4 05 08

FIG. 4. The analysis for small &, values of oy obtained from the
compatibility condition (24) plotted against D(o~ opk?).
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The adjoint problem is then [16]
vi=—Mv. (21)
If we put v=(z;,2,,U, V)T in Eq. (21), we obtain the required

adjoint problem, on eliminating z;, 2,,

d
—(eU") = b (U — e“¥PV) = 0,
d¢ 0

d
%(De‘{/DV’) —2ayby(e“U - e“PV) =0, (22)

subject to
UV—0as{— xoo, (23)

The compatibility condition [, v’-Rd{ then gives

(oo+ 1) | e“aludi+ (oy+ D)

-0 —00

e“/Phlvdi =0.

(24)

It is condition (24) that determines o,

The adjoint problem (22) and (23) has to be solved nu-
merically. This was found to be a relatively straightforward
process applying the same shooting method that was used for
the traveling wave Eqs. (4) and (5). Having calculated U and
V, these were then used to calculate the integrals in Eq. (24)
to determine o,. A graph of oy against D is shown in Fig. 4.
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FIG. 5. Dispersion curve & against k obtained from Eq. (27) for
small D analysis.

This graph shows that 0y=0 at D=0.4236. (This value was
obtained by refining the numerical procedure to take very
small increments in D around this value.) The graph also
shows that 0y—0 as D—0, and that o, reaches its maxi-
mum value of 07=0.34 at D=0.16. These results are consis-
tent with [5] and the dispersion curves shown in Fig. 2.
These dispersion curves have a “parabolic” appearance in the
unstable region. This suggests that we could use oy as an
alternative measure of the strength of the diffusional insta-
bility (note that o~ oyk’> for k small and so o, gives the
“slope” of the dispersion curve at the origin). Using this
criterion, our results indicate that Dy=0.16 is
the optimum value of D for the growth of a diffusional
instability.

B. Solution for D small

The results shown in Fig. 2 (and in Fig. 6 below) suggest
that o becomes small as D decreases toward zero. We can
obtain a solution valid for D<<1 following directly on from
the approach used in [9] for the traveling wave equations.
The transformation ay({)=Day({), c=¢D was applied in [9]
to obtain the leading order equations for the traveling wave
solution in the inner region

@y —aghg=0, b+ Cby+ayhy=0, (25)

subject to the boundary conditions that

50—>O, bo—>las§—>—00, Zl'()"’EZ'F'“,

by— 0 as { — oo, (26)

An outer region, in which /=D, bQ=D2b_0, is then required
to complete the solution. However, it is the solution in the
inner region that determines ¢ ([9] found ¢=1.219) and it is
this region that concerns us for the stability analysis.

In the inner region we also put o=Da, K:Dg, which

results in the leading order equations for the stability analysis
for D<1 from Egs. (8) and (9)
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A" — (b3 + k*)A - 2ayhyB =0,

B"+B' + b2A + (2ayby - k* - 5)B =0, (27)

still subject to conditions (10). Equations (27) were solved
numerically using the traveling wave solution given by Eqgs.
(25) and (26), to determine & in terms of k, with a graph of
& being given in Fig. 5. This graph has a similar shape to
those given in Fig. 2, although now o=Da. Values of &
reach a maximum value of &,,=0.0772, so that o,,,
~0.0772 D+--- as D—0. This asymptotic form is shown in
Fig. 3(a) by the broken line and shows reasonable agreement
with the results for the smaller values of D. The graph also
shows that =0 at k=0.494, which provides an upper bound
for the possibility of unstable wave numbers.

II1. DISCUSSION

We have established, both through the numerical calcula-
tion of dispersion curves and by an analysis for small wave
numbers, that there is an optimum value D, of D (the ratio of
the diffusion coefficients of autocatalyst to substrate) for the
generation of a diffusional instability. By this we mean that,
with D=D,, the growth rates o arising in a linear stability
analysis achieve their largest values, with only smaller
maximum growth rates being reached for other values of
D(<D,). In fact, we have shown that the growth rates are of
O(D) for D small, with a,,,,~0.0772 D as D—0. Alterna-
tively, there is a nonzero value of the diffusion coefficient Dy
of the autocatalyst which makes the system most unstable.
This result appears contrary to the argument previously em-
ployed in [4] to show the possibility of diffusional instabili-
ties. This argument is essentially the same as that given for a
Turing instability and, in this scenario, the system does be-
come increasingly unstable (in the sense we have used) as it
moves away from criticality.

A diffusional instability arises when the flux of the reac-
tant is sufficiently greater than that of the autocatalyst. When
the diffusion coefficient of the autocatalyst is decreased
(smaller values of D) the overlap of reactant and autocatalyst
decreases, resulting in lower reaction rates and slower front
speeds (see Fig. 1). Thus there are two counteracting effects.
Whereas the decrease in the flux of the autocatalyst favors
the instability, the decrease in the reaction rates for the auto-
catalysis leads to a weaker feedback, tending to slow the
growth of the instability. This latter effect becomes more
pronounced at the smaller values of D and accounts for the
decrease in o at these values (as in Figs. 2, 3, and 6). Ap-
plying electric fields to the system has been shown previ-
ously to lead to similar effects, producing changes in the
concentration fluxes and consequent changes in the stability
characteristics, see, for example, [17-19].

Our discussion has concentrated on cubic autocatalysis
(1) and an obvious question is whether the optimum value
Dy>0 of D for initiating a diffusional instability is particular
to this system or a more general feature. To go a little way to
address this point we also computed dispersion curves for the
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FIG. 6. Dispersion curves for the chlorite-tetrathionate system
(28), plots of ¢ against k, (a) for D=1.0 to D=0.2, (b) for D=0.2 to
D=0.0025.

chlorite-tetrathionate (CT) system, which we modeled by a
two-variable reaction mechanism for the species [5402_]
=ga and [H*]=b [15]. In dimensionless variables this results
in the reaction-diffusion equations [13] [following (2)]

J
o VZa - ab’*(k +7a),

ob
— =DV?b + 6ab*(k+7a),
ot ot

(28)

where we took x=1 in the computations (following [13]).
The planar traveling wave solutions to Eq. (28) have already
been fully discussed in [13] and we used these as our base
state in a linear stability analysis for transverse diffusional
instabilities. The resulting dispersion curves are shown in
Fig. 6. In Fig. 6(a) we give the curves for D=1.0 to D=0.2.
This figure shows that an instability develops (a range of
k over which ¢>0) around D=0.45 and the growth rates
o increase as D is reduced to D=0.2. In Fig. 6(b) we give
the dispersion curves for D=0.2 to D=0.0025. Here we ob-
serve the same general feature as for cubic autocatalysis
(compare with Fig. 2), with the growth rates decreasing as

026219-5



J. H. MERKIN AND I. Z. KISS

D is decreased. Again the growth rates o become small as D
gets very small. For the CT system there is also the existence
of a (nonzero) optimum value D, (here Dy=0.2) at which
0,4 achieves its largest value, hence making the system
most unstable at this value of D.

Although our results are for two relatively simple chemi-
cal systems (IAA and CT), they do suggest that the existence
of a nonzero value of the ratio of diffusion coefficients at
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which the system is most unstable to diffusional instabilities
could well be a general feature of this type of system.
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